Phonetics vs. phonology:

Fundamental frequency as a correlate of stop voicing in English and Spanish

Olga Dmitrieva, Amanda Shultz, Fernando Llanos, Alexander Francis

Berkeley Phonetics and Phonology Forum, November 19, 2012

Acknowledgments

- This is a join work with Amanda Shultz, Fernando Llanos, and Alexander Francis at Purdue University.
- English data was collected by Amanda Shultz.
- Spanish data was collected by Fernando Llanos.
- We are grateful to Prof. Juana Gil Fernandez for allowing us the use of lab facilities at CSIC in Madrid.

Onset F0

- Fundamental frequency at the onset of vocalic voicing is effected by the voicing qualities of the preceding consonant:
 - Voiced consonants -> lower onset F0
 - Voiceless consonants -> higher onset F0

Tonogenesis

- This tendency is believed to have contributed to *tonogenesis* in some languages, where consonant voicing is accompanied by (1) or substituted by (2) exaggerated systematic F0 perturbations on the following vowel (Kingston 2011):
 - 1 Yabem and Korean
 - 2 Western Kammu dialects, Eastern Cham or Utsat

Automatic?

- This covariation appears to be relatively consistent across languages, suggesting that it is an automatic uncontrolled/able consequence of articulation and/or aerodynamics of voicing production.
- What exactly about voicing is causing the covariation?

Types of voicing distinction

- The answer to this question is complicated by the fact that phonological voicing is not phonetically uniform across languages.
 - At least two types of voicing contrasts are common:
 - prevoiced vs. voiceless unaspirated
 - voiceless unaspirated vs. voiceless aspirated.
 - In terms of Voice Onset Time (VOT) parameter these three types are referred to as:
 - negative or lead VOT (for prevoiced)
 - 0 or short lag VOT (for voiceless unaspirated)
 - positive or long lag VOT (for voiceless aspirated)

VOT continuum

Voicing and F0 perturbation

- The two types of VOT distinctions sometimes are lumped together as a [+/- voice] distinction.
 - Despite the fact that both articulatorily and acoustically they are very different:
 - Presence or absence of vocal fold vibration vs.
 - Presence of absence of aspiration.
- Most F0 perturbation accounts focus on prevoiced 0 VOT distinction (although some use English as example).
- Thus, we are looking for the causes of F0 perturbation in mechanism involved in promotion OR suppression of vocal fold vibration during obstruent production.

Phonetic causes of F0 perturbations

- Larynx lowering to facilitate airflow through glottis for voiced consonants.
 - Results in vocal folds slackening, through tilting of the cricoid cartilage forward relative to the thyroid cartilage (Hombert et al. 1979; Kingston 2011).
 - Which results in *lower* onset F0.
- Suppression of VF vibration in voiceless consonants is achieved through greater longitudinal tension.
 - Evidenced by higher cricothyroid muscle activity in voiceless consonants (Löfqvist et al. 1988)
 - Resulting in *higher* onset F0.

Expectations

- Based on this explanation, we predict *lower* onset F0 after actively *voiced* obstruents, and *higher* onset F0 after *voiceless* ones.
- No phonetic reason to expect a difference in onset F0 between voiceless aspirated and unaspirated?
- Unless... Higher airflow rate after aspirated stops may condition higher onset F0 (Ladefoged 1967; Ohala 1973)
- There is, also a phonological reason to emphasize the acoustic difference between the contrasting sounds (Keating 1984).
- What does the research show?

Experimental evidence

Language	Study	Higher onset F0	Methods
English	Onde 1984	t (non-sign.?)	5S, 5 tokens
Korean	Han 1967	t ^h	2S
	Kim K. 1968	t ^h	1S?
	Kagaya 1974	t (8%, 1 S)	2S, 12 tokens
Hindi	Kagaya&Hirose 1975	t (5%)	1S, 12 tokens
Danish	Fischer-Jørgensen 1968	No effect	
	Jeel 1975	t ^h (smwht)	Speaker variability
	Reinholt Petersen 1983	t ^h (smwht)	Speaker variability
Thai	Ewan 1979	t ^h (5%)	1S, 90 tokens
(Standard,	Gandour 1974	t (8%)	1S, 90 tokens
Bangkok)	Erickson 1975	t ^h - 7S	11S, 8 tokens
Cantonese	Francis et al. 2006	t	16S, 10 tokens
Taiwanese	Lai et al. 2009	t ^h	10S, 30 tokens
Mandarin	Xu&Xu 2003	t	
Wu dialect (Wufang)	Ballard 1975	Hist. tone lowering after t ^h	

Experimental evidence

- Six out of 14 randomly selected studies report F0 raising after *unaspirated* stops
- Seven report F0 raising after *aspirated* stops
- One reports no effect
- Note, however, small number of subjects in earlier studies.
- Conclusions? Onset F0 differences seem to be maintained but not in a consistent direction.
- Supports the phonological view:
 - Not an automatic consequence of aspiration/VOT differences but a controlled emphasis of phonological distinctions.

Phonetics vs. Phonology

- Why is the difference so consistent between voiced and voiceless?
 - Kingston and Diehl (1994, 1995) and Kingston *et al.* (2008) argue that lower onset F0 after prevoiced stops integrates perceptually with voicing during closure and emphasizes the sensation of low-frequency energy, increasing the perceptual difference between voiced and voiceless stops.
 - There is no such reason to implement onset F0 differences in a particular direction between aspirated and unaspirated stops.

The present study

- GOAL:
 - To investigate the onset F0 distribution with respect to phonetic categories of prevoiced, unaspirated, and aspirated initial stops
 - in a comparable experimental setting
 - across two languages where these phonetic categories are used differently to implement the phonological [+/- voice] distinction.

Phonetics of voicing

- English prevocalic stops:
 - Voiced
 - Typically short lag voiceless unaspirated
 - Occasionally lead VOT prevoiced
 - Voiceless
 - Long lag aspirated
- Spanish prevocalic stops:
 - Voiced
 - Lead VOT prevoiced
 - Voiceless
 - Short lag voiceless unaspirated

- Phonetic explanation (automatic):
 - Onset F0 voiceless > voiced: [t], [t^h] > [d] independently of their phonemic status (i.e. in both English and Spanish)
 - Onset F0 [t^h] > [t] (if aerodynamic story is correct), or possibly
 [t^h] = [t]

Phonological explanation (controlled)

- Difference observed only between those phonetic categories that are also phonologically distinctive
- Onset F0 voiceless > voiced: [t] > [d]
- Onset F0 [t^h] > [t] or [t^h] < [t]</p>

- Phonological explanation (controlled)
 - Difference observed only between those phonetic categories that are also phonologically distinctive
 - Onset F0 [t] > [d]
 - Onset F0 [t^h] > [t] or [t^h] < [t]</p>

- Phonological explanation (controlled)
 - Difference observed only between those phonetic categories that are also phonologically distinctive
 - Onset F0 [t] > [d]
 - Onset F0 [t^h] > [t] or [t^h] < [t]</p>

Experiment

- 30 NS Am. English (W. Lafayette, IN), 24 NS Spanish (Madrid, Spain)
- English: 4 b p min. pairs
 BAT/PAT + 8 filler pairs
- Spanish: 4 b p min. pairs
 BATA/PATA + 8 filler pairs
- Words randomized on screen, 5 blocks, 2 sec + ISI 0.5 sec

Experiment

• VOT:

Beginning of the burst to the onset of voicing.

Onset f0:

 First post-VOT interval at which Praat algorithm detected periodicity.

– Onset f0 normalization:

 Converted to semitones relative to the mean onset f0 of each speaker:

12 ln(x / individual mean onset f0) / ln2.

Results: by phonological category

- Effect of *Phonological Category* within each language:
 - Onset f0 significantly higher after [-voice] than after [+voice] in both languages (p < 0.001).

Results: by phonological category

- Effect of *Phonological Category* within each language:
 - Onset f0 significantly higher after [-voice] than after [+voice] in both languages (p < 0.001).

So far...

• For phonological: Contrasting phonological categories are well differentiated through onset F0 independently of their phonetic realization.

Results: by phonological category

- Effect of *Language* within each phonological category:
 - [+voice] Onset f0 significantly higher in Spanish [+voice] than in English (p < 0.001): $[p] < [b] \rightarrow Greater VOT \neq higher onset f0 !$
 - [-voice] Onset f0 significantly higher in English [-voice] than in Spanish (p < 0.001): [p^h] > [p]

So far...

- For phonological: Contrasting phonological categories are well differentiated through onset F0 independently of their phonetic realization.
- Against phonetic: As much as it is justified to compare these across languages, voiced stops are <u>not always</u> lower in onset F0 than voiceless ones.

Results: by phonetic category

- Effect of *Phonetic Category* within each language:
 - Spanish: onset F0 significantly higher after voiceless than after voiced (p < 0.001): [p] > [b]
 - English: non-significant difference in the opposite direction:
 [p] = [b]

So far...

- For phonological: Contrasting phonological categories are well differentiated through onset F0 independently of their phonetic realization.
- Against phonetic: As much as it is justified to compare these across languages, voiced stops are <u>not always</u> lower in onset F0 than voiceless ones.
- For phonological: The same phonetic categories are distinguished through onset F0 when contrasting but not when non-contrasting.

Results: by phonetic category

- Effect of *Language* within the shared phonetic categories :
 - [prevoiced]: Onset F0 Spanish > English (p < 0.01)</p>
 - [short lag]: Onset F0 Spanish > English (p < 0.001).</p>

So far...

- For phonological: Contrasting phonological categories are well differentiated through onset F0 independently of their phonetic realization.
- Against phonetic: As much as it is justified to compare these across languages, voiced stops are <u>not always</u> lower in onset F0 than voiceless ones.
- For phonological: The same phonetic categories are distinguished through onset F0 when contrasting but not when non-contrasting.
- Against phonetic (?): The same phonetic categories across languages are not similar in onset F0 values. If language-specific effect why not consistent across categories?

Results: Distribution

Results: VOT - onset F0 correlation

Spanish

R = 0.38, p < 0.001

English

Results: VOT - onset F0 correlation

Spanish

R = - 0.04, n.s.

English

Conclusions

- Both mean and correlation analyses point towards phonologically-based distribution of onset F0 values:
 - Onset f0 is maximally distinctive between contrasting phonological categories of each language.
 - Equivalent phonetic categories across languages do no agree in onset f0 (short lag [p] and prevoiced [b]).
 - Equivalent phonological categories within language are not distinguished through onset f0 (prevoiced vs. short lag in English).

Ohde 1984

• How do we reconcile these findings with earlier data reported in Onde 1984:

Onde 1984

- Present study: $b = p < p^h$
- Environment matters:
 - Onder 1984: "Say ha CVC again"
 - Where CVC is *bot*, *pot* or *spot*.
 - In this setting
 - [b] in bot would be prevoiced and low in onset F0
 - [p^h] in pot would be aspirated and high in onset F0
 - [p] in spot, is unaspirated and crucially <u>non-contrastive</u> with either [b] or [p^h] -> no special care is taken to separate it from either.

Possible interpretation

- The comparison of these two studies suggests that in English syllable-initial stops
 - Onset F0 is actively lowered in voiceless unaspirated in order to provide a better contrast with voiceless aspirated.
 - Possibly, onset F0 is also actively raised in voiceless aspirated.
 - In non-contrastive environments these two are indistinguishable in onset F0.

Alternative explanations?

- AE are not as familiar with producing prevoiced stops in initial position
 - As a result, their prevoiced stops may not have been always voiced throughout ->

– A less pronounced effect on onset F0?

- However, AE prevoiced stops are even lower than Spanish in onset F0.
 - It is the voiceless unaspirated where the dramatic difference between two languages is observed.

Phonetics or phonology?

- Probably both:
 - Phonetic tendency, at least, for voiceless consonants to have a higher onset F0 than voiced ones.
 - This difference can be enhanced or suppressed (reversed?) to emphasize phonological contrasts.
 - Evidence for adaptive dispersion theory of contrast (Liljencrants and Lindblom 1972; Lindblom 1986; 1990) in the domain of secondary cues.

Thank you!